

The Use of Mobile Application to Improve Chinese Reading Performance in Children with Dyslexia

透過流動應用程式改善讀寫障礙兒童的中文閱讀表現

Dr. Yetta Kwailing Wong
Assistant Professor, Department of Educational Psychology
The Chinese University of Hong Kong

Collaborators

Dr. Ann Lui

Dr. Gary Wong

Department of Curriculum and Instruction

Dr. Alan Wong

Funding Support

Research and Development Projects EDB(LE)/P&R/EL/175/10

The Direct Grant for Research the Chinese University of Hong Kong

Dyslexia

- Children with dyslexia face huge difficulty learning to read
 - Despite adequate schooling, age, normal IQ and visual acuity
- It is a complex disorder involving neural, cognitive and genetic factors (Hancock et al., 2017)
- Disentangling cause(s) from effect in dyslexia has been difficult (Goswami, 2015)
 - Deficits in various factors might result from reduced reading in children with dyslexia
 - Intervention studies provide the strongest test of causation
- Designing effective intervention strategies has been a major challenge

Intervention Strategies with Dyslexia

- Common interventional approaches
 - Often focused on single factors (e.g., phonological awareness, word reading practice, etc)
 - Often labor-intensive
 - Effectiveness often challenged (Gori et al., 2015; Galuschka et al., 2014)
- Other interventional approaches are effective but may not be 'central' to the problem

Extra-large letter spacing improves reading in dyslexia

Marco Zorzi^{a,1,2}, Chiara Barbiero^{b,1}, Andrea Facoetti^{a,c,1}, Isabella Lonciari^b, Marco Carrozzi^b, Marcella Montico^d, Laura Bravar^b, Florence George^e, Catherine Pech-Georgel^e, and Johannes C. Ziegler^f

^aDepartment of General Psychology and Center for Cognitive Science, University of Padova, 35131 Padua, Italy; ^bChild Neurology and Psychiatry Ward, Department of Pediatrics, Institute for Maternal and Child Health "Burlo Garofolo", 34137 Trieste, Italy; ^cDevelopmental Neuropsychological Unit, "E. Medea" Scientific Institute, 32842 Bosisio Parini (LC), Italy; ^dEpidemiology and Biostatistics Units, Institute for Maternal and Child Health "Burlo Garofolo", 34137 Trieste, Italy; ^eCentre de Références des Troubles d'apprentissages, Centre Hospitalier Universitaire Timone, 13385 Marseille, France; and ^fLaboratoire de Research de Reférences des Troubles d'apprentissages (Centre Hospitalier Universitaire Timone, 13385 Marseille, France; and flaboratoire de Research (Centre Hospitalier Universitaire Timone, 13385 Marseille, France; and Language Research

Current Biology 23, 462-466, March 18, 2013 ©2013 Elsevier Ltd All rights reserved http://dx.doi.org/10.1016/j.cub.2013.01.044

Report

Action Video Games Make Dyslexic Children Read Better

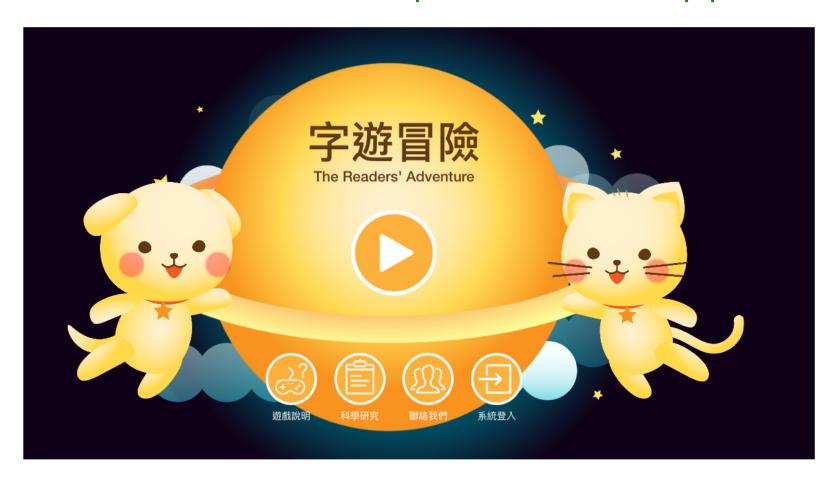
Sandro Franceschini, 1,3 Simone Gori, 1,2,3 Milena Ruffino, 2 Simona Viola, 1 Massimo Molteni, 2 and Andrea Facoetti 1,2,3,* 1 Developmental and Cognitive Neuroscience Lab, Department of General Psychology, University of Padua, Padua 35131, Italy

²Developmental Neuropsychology Unit, Scientific Institute E. Medea, Bosisio Parini, Lecco 23842, Italy

strategies) appears to be the most efficient treatment [1, 2, 13]. However, all the existing treatments are controversial and demand high levels of resources. Moreover, the cognitive processes underlie the improvements in reading ability remain unclear [1, 4].

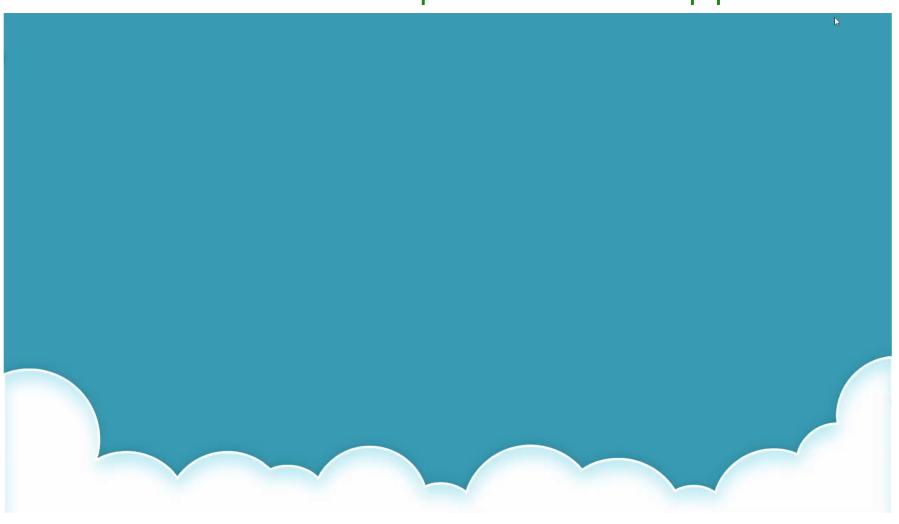
Attentional dysfunction is an important core deficit in dyslexic individuals [6, 9-12, 16-18]. Letters must be precisely

Rayman Raving Rabbids wii


Individual Variability in Chinese Dyslexia is High

	Task	% of children with deficit		Average %	
		This study	Ho et al.'s study	This study	Ho et al.'s study
Rapid Naming tasks	Rapid naming subtests			57.1	50.0
	Digit Naming	57.1	53.3		
	Colour Naming	_	60.0		
	Picture Naming	_	36.7		
Phonological tasks	Phonological subtests			29.3	15.3
	Sound Discrimination	_	10.0		
	Rhyme Detection	21.1	20.0		
	Onset Detection	29.3	20.0		
	Word Repetition I	32.0	20.0		
	Word Repetition II	37.0	_		
	Nonword Repetition	27.2	6.7		
Orthographic tasks	Orthographic subtests			42.0	38.9
	Left/Right Reversal	46.3	46.7		
	Lexical Decision	44.2	33.3		
	Radical Position	35.4	36.7		
Visual tasks	Visual subtests			27.1	36.7
	Visual Discrimination	25.2	36.7		
	Visual Memory	28.6	46.7		
	Visual Spatial Relationships	30.6	40.0		
	Form Constancy	_	26.7		
	Visual Closure	23.8	33.3		Ho et

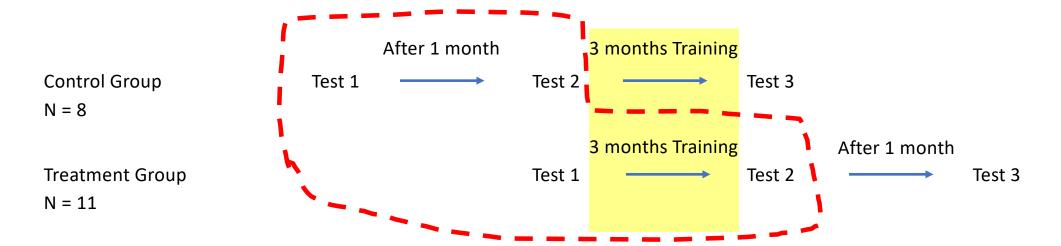
An Innovative Intervention Approach


- A multi-component approach to intervention
 - Focused on visual perceptual skills, a reading-related bottleneck that is relatively easy to train
 - Mixed visual, visuoauditory and visuomotor skills with other cognitive demands;
- Individualized progress
 - Allowed flexible improvement of individuals based on their abilities
- Computerized and mobile training
 - Assisted with some face-to-face training
- Motivated learning
 - A gamified learning context

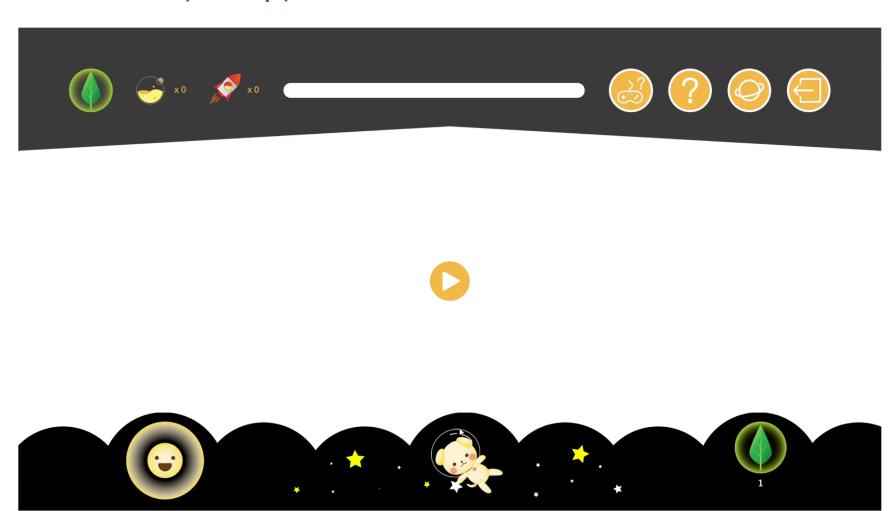
Our In-house Developed Mobile Application

Works for websites and mobile devices (tablets and cell phones)

Our In-house Developed Mobile Application



Our In-house Developed Mobile Application



Our Project (Work in Progress)

- We collaborated with 2 schools with 19 students with dyslexia
- Design
 - 20-hour training at school as after-school activities
 - A randomized-controlled trial design

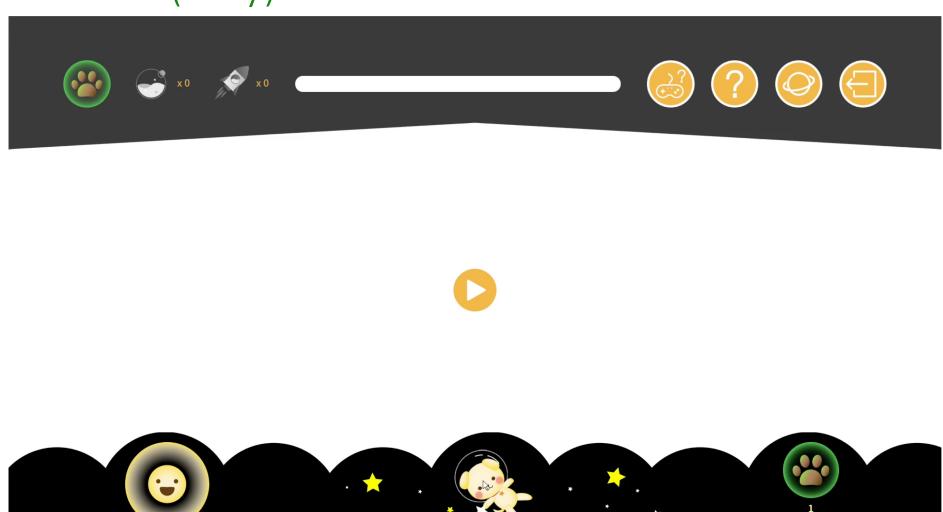
Game 1 (easy)

Game 1 (difficult)

Game 2 (easy)

Game 2 (difficult)

Game 3 (easy)


Game 3 (difficult)

Game 4 (easy)

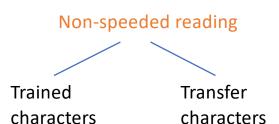
Game 4 (difficult)

Game 5

1 7 6 9 5 3 0 4

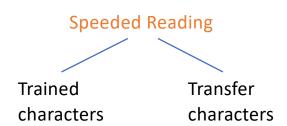
4 2 7 5 0 9 6 1 7 0 5 8 4 2 6 3

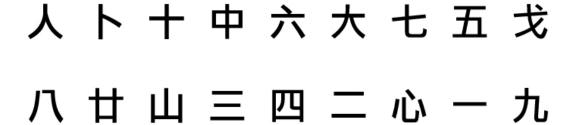
7 5 1 3 6 2 9 8


6 1 8 7 5 4 2 3

5 4 2 60 9 7 8

1 8 2 6 0 3 7 4


4 0 1 5 6 7 8 2


Reading Measures

The number of correctly read characters

The number of correctly read characters in 30s

(Other perceptual and cognitive measures were also available)

Conclusions

 Our training improved word reading performance in children with dyslexia

- Theoretical contribution
 - Visual perceptual bottleneck might be an important cause of reading deficits in dyslexia
- Practical contribution
 - We designed an effective training intervention for Chinese dyslexia

Conclusions

- Why does it work?
 - Multi-component, individualized, gamified, computerized and mobile
- It is a promising intervention strategy for dyslexia
 - Cost-effective, accessible, fun, and cater for diversified needs of individual learners
- It is a potentially fun learning strategy for all Chinese learners
- Work in progress
 - In collaboration with 4 schools
 - We welcome future long-term collaborations with schools

Questions and Comments?

To learn more about our work

The Learning and Perception Lab, CUHK

https://sites.google.com/view/yettawong/home

To learn more about this website

For questions, comments and collaborations yetta.wong@cuhk.edu.hk

For future release (end of 2020), testing accounts, etc. laplab.cuhk@gmail.com